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Abstract: The aim of this work was to study the structural descriptor-mobility
relationship of representative tripeptides in capillary zone electrophoresis (CZE)
with the change of such separation parameters as pH, applied voltage and
separation length in respect to their influence on electrophoretic migration
properties. At the present stage of the work, the ionic charge was considered
as structural descriptor. A multivariable linear regression (MLR) model and
a back-propagation artificial neural network (BP-ANN) were applied to
predict the electrophoretic mobilities of the model tripeptides with non-
polar, polar, positively charged, negatively charged and aromatic R group
characteristics. Here we present a comprehensive analysis on electrophoretic
mobilities measured at pHs 2.5, 4.5, 7.5 and 9.5 at two different capillary lengths
of 10cm and 30cm, as well as four applied electric field strengths ranging from
100 to 400V/cm to teach and evaluate our mobility predicting models. The
anticipated mobilities predicted by MLR and BP-ANN were compared to each
other and to the experimental data, respectively. The BP-ANN model resulted
in considerable higher precision in predictability that of the MLR method.
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INTRODUCTION

Peptides are among the most important biomolecules, being responsible
for cellular structure and function. They play a decisive role in regulation
and control of many vitally important processes in all living organisms,
acting, e.g., as hormones, neurotransmitters, immunomodulators,
coenzymes, enzyme substrates and inhibitors, receptor ligands, drugs,
toxins, and antibiotics.�1� In recent proteomics endeavors, comprehensive
analysis of a proteome and/or peptidome represents the main directions
to get a better understanding of the molecular bases of biological
processes. In drug target discovery the importance of peptides is ever
increasing, since both the structure and function of many proteins are
identified by their peptide fragments.�2�

Capillary electrophoresis (CE) is of high importance in the analysis,
isolation and characterization of peptides. This is attributed to its
simplicity, low running cost, high separation efficiency, small sample
volume and speed of separation. Furthermore, CE has proven to be
a very effective technique for the measurement of physicochemical
characteristics of peptides, such as molecular mass, charge state and
electromigration properties.�3,4�

For many years, introduction of models to predict and optimize
electromigration properties of proteins and peptides represented a
challenge. The main parameter in CE separation of peptides, especially
when using low ionic strength buffers, is their electrophoretic mobility.
Based on the Stoke’s Law, electrophoretic mobility (�ef ) in CE can be
given as:

�ef = q

6��r
(1)

where r the effective ion radius, q is the charge and � is the solution
viscosity.

The development of quantitative structural descriptor-mobility
models (QSMR), which correlate mobility, mass and charge of peptides,
offers a powerful tool, not only for predicting electrophoretic mobility,
but also for optimizing CE separations, studying structural modifications
(e.g. phosphorylation, glycosylation, deamidation, etc.) and for the
investigation of surface charge characteristics and conformation.�5�

In the literature the semi-empirical Offord model�6� was frequently
reported to provide satisfactory results in predicting electrophoretic
mobilities.�7� However it should be mentioned, that electrophoretic
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mobilities of peptides predicted by QSMR models that rely only on
charge and mass data have limited accuracy when applied to a range
of different peptides.�8� Recently non-linear modeling approaches, such
as artificial neural networks (ANN) were effectively used to address
the reported shortcomings of the semi-empirical models.�9–12� ANNs are
computational models consisting of elements, connected and ordered in
layers, capable of processing information. Machine learning techniques
like ANNs for designing QSMR models have several advantages over
semi-empirical approaches including the capability of self-learning and
modeling complex data without the need for a detailed understanding of
the underlying phenomena.

A detailed description of the theory behind the application of
artificial neural networks for mobility prediction has been adequately
described elsewhere.�13� Briefly, artificial neural networks (ANN) are
based on a simplified mathematical model of the information processing
elements of the human brain. On the other hand, an ANN is not
more than a nonlinear regression model and therefore it can be
efficiently used as a general approximation function, e.g., the description
of structure-CZE parameters-mobility relationship. The neuron model
contains a weight factor for each of its inputs. The output of the
neuron is calculated from the weighted sum of the inputs by the neuron
transfer function. The most frequently used transfer functions are the
sigmoid

(
1

1+e−x

)
and the tanh�x� functions. In a usual feed-forward

network, each neuron transfers the information to all neurons of the
following layer. The input values must be normalized to the range
of 0–1, while the outputs are denormalized. Learning basically means
searching the weight factors by nonlinear optimization. One of these
methods is the back-propagation algorithm which minimizes sum of
the squared output errors using a gradient type approach layer by
layer. An ANN consisting of an input, a hidden and an output layer
can provide arbitrarily accurate approximation by using an adequate
number of hidden neurons. Apparently, ANNs can be universally used
to solve almost any approximation problem. It is very important,
that the teaching patterns should cover the full range of independent
and dependent variables. When the number of the hidden neurons is
adequate, the regression model is accurate. If the number of the neurons
is too high, the generalization ability of the ANN gets compromised. The
learning process is relatively slow; however the evaluation of the model
is fast.

The main goal of this work was to investigate and model
the structural descriptor-mobility relationship for capillary zone
electrophoresis (CZE) of tripeptides. The structure can be adequately
represented by suitably selected structural descriptors. At this stage of
the work the ionic charge was selected as first structural descriptor,
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since it can be readily calculated for the studied tripeptides. Separation
parameter changes were carefully designed in respect to their influence
on electrophoretic migration. Both the multivariable linear regression
(MLR) method and a back-propagation artificial neural network (BP-
ANN) were applied to electrophoretic mobility prediction of the model
peptides with non-polar, polar, positively and negatively charged as well
as aromatic R group characteristics.

EXPERIMENTAL

Chemicals

Tripeptides of alanine (AAA), lysine (KKK), and tyrosine (YYY)
were purchased from Sigma-Aldrich (St. Louis, MO). Tripeptides of
aspartic acid (DDD) and serine (SSS) were from Bachem (Bubendorf,
Switzerland). The charges of the tripeptides were calculated from
the pK values of the protonated groups by the Pallas software
(Comgenex, Budapest, Hungary). A mixture of mesityl oxide (2.5%)
and benzyl alcohol (2.5%), both from Sigma-Aldrich, was used as
combined EOF marker. HCl and NaOH (Sigma-Aldrich) were used
for conditioning solutions and to adjust the pH of the background
electrolytes. Acetic acid, phosphoric acid and CHES were used as
running buffers components (all from Sigma-Aldrich). All solutions were
prepared with HPLC grade water (Sigma-Aldrich) and all chemicals used
were of analytical grade.

Instrumentation

All experiments were carried out on a Beckman P/ACE MDQ capillary
electrophoresis instrument (Beckman Coulter, Fullerton, CA), using bare
fused-silica capillaries (Polymicro Technologies, Tucson, AZ; 360�m
OD, 50�m I.D.) of a total length of 40cm. Effective separation lengths
were 30cm and 10cm, respectively. Detection wavelength was 214nm
and separation temperature was set at 25�C.

Separation Conditions

The electrophoretic migration properties of the tripeptide samples were
investigated at four different pHs. Buffers for pH 2.5 and 7.5 were
prepared using phosphoric acid. The pH 4.5 buffer was prepared from
acetic acid and the pH 9.5 buffer was prepared from CHES. All running
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buffers were 30mM in concentration. The investigated tripeptide samples
were chosen to represent the five main amino acid characteristics of
apolar (alanine tripeptide), polar (serine tripeptide), acidic (aspartic acid
tripeptide), basic (lysine tripeptide) and aromatic (tyrosine tripeptide).
Four different voltages of 4, 8, 12 and 16kV were applied during
the study. Every tripeptide sample was analyzed in four different pH
background electrolytes at four different electric fields and two effective
capillary lengths (10 and 30cm). Samples were injected by pressure
(1psi for 4 s) for both separation lengths. Each experiment was done in
triplicates. Before every set of injections, the capillary was conditioned
by rinsing with water and 1M NaOH, 5min each, followed by water
and buffer rinse. The capillary was pressure-rinsed by the relevant
background electrolyte solution between the injections. The peak of the
reference EOF marker (injected for 4 s at 1psi) was used to calculate the
electrophoretic mobilities of the tripeptides.

RESULTS AND DISCUSSION

The electrophoretic migration times and electroosmotic flow (EOF)
values at the four different pHs applying four different voltages with
the sample test mixture of all five tripeptides is listed in Table 1. As
one can follow, at pH 2.5 the elution order was lysine, alanine, serine,
tyrosine and aspartic acid tripeptides. Increasing the pH to 4.5 resulted
in co-migration of three of the five tripeptides: alanine, serine and
tyrosine tripeptides followed by the aspartic acid tripeptide at around
20 minutes. At pH 7.5 the migration times of all tripeptides decreased
with increasing resolution and the migration order changed to lysine,
alanine, tyrosine, serine and aspartic acid. When the running buffer pH
was further increased to 9.5, the resolution became poor again, resulting
in overlapping of the alanine, serine and tyrosine tripeptides, followed by
the aspartic acid at 10min.

A representative example of the capillary zone electrophoresis
separation of the 5 tripeptides attained at pH 7.5 is shown in Figure 1.
The migration order was: KKK (lysine), AAA (alanine), YYY (tyrosine),
SSS (serine) and DDD (aspartic acid) tripeptides. Please note that
at this stage the goal of this work was to study the effects of
background electrolyte pH, separation voltage and separation length
on the electromigration properties, not to attain the best possible peak
shapes. The average standard deviations of migration times were quite
adequate for all the samples due to the carefully designed conditioning
of the capillary. The overall RSD values were around 1%. For all the
analytes, the average standard deviations of the migration times were:
1.54% for the alanine tripeptide, 1.02% for the aspartic acid tripeptide,
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Figure 1. Capillary zone electrophoresis separation of a tripeptide test mixture
in 30mM phosphate buffer (pH 7.5). Peaks: lysine (KKK), alanine (AAA),
tyrosine (YYY), serine (SSS) and aspartic acid (DDD) tripeptides. Conditions:
50 �m i.d. bare fused silica capillary with 10cm effective length; Applied
voltage: 12kV, Temperature: 25�C. Injection: 1psi/4 sec.

0.86% for the lysine tripeptide, 0.99% for the serine tripeptide, 1.08% for
the tyrosine tripeptide and 1.41% for the EOF marker.

Mobility and Charge Calculation

The first statistical momentum �m1� of the tripeptide peaks was
considered to be the migration time, and was calculated as:

m1 =
∑

�t · AU�
∑

AU
(2)

where t is the elapsed time of the separation and AU is the corresponding
UV absorbance value. Peptide mobilities for all the test mixture
components were calculated as:

�ef = vsample − vEOF

E
(3)

where vsample represents the migration velocity of the samples, vEOF the
migration velocity of the EOF marker, and E stands for the applied
electric field strength.
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Development of the structural descriptor-mobility related model
required determination of peptide charges at each pH value. The molar
fractions of the single (i = 1), double (i = 2), m times (i = m) protonated
forms of the tripeptides were derived by:

	i�i=1
2
3
���
m� =
�H+�i

∏i
n=1 Kn

1+∑m
k=1 �H

+�k
∏k

n=1 Kn

(4)

where Kn is the dissociation constant for the nth protonable group.
The molar fractions of the completely deprotonated form of the

tripeptides were determined as:

	0 =
1

1+∑m
k=1 �H

+�k
∏k

n=1 Kn

(5)

The average charges of the sample tripeptides at each pH were
calculated as:

q =
m∑

i=0

	i · qi (6)

where qi is the charge corresponding to the i-times protonated form of
the tripeptides. The calculated charge states of the tripeptides as the
function of pH is shown in Figure 2.

Figure 2. Calculated charges of the tripeptide test compounds as a function of
the pH. AAA: alanine tripeptide, DDD: aspartic acid tripeptide, KKK: lysine
tripeptide, SSS: serine tripeptide, YYY: tyrosine tripeptide.
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Electrophoretic Mobility Prediction Models

In order to achieve more accurate and higher prediction performance
than available with the semi-empirical models such as the Offord’s
equation,�6� Grossman’s equation�14� and Compton’s equation,�15� more
complex empirical models were developed. Both a multivariable
linear regression (MLR) method and a back-propagation artificial
neural network (BP-ANN) model were both applied to predict the

Figure 3. Correlation diagrams of the linear model (a), artificial neural network
model (b) and the residuals of the artificial neural network model (c). Mobilities
are given in 10−4 cm2/Vs.
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Artificial Neural Network Modeling 2357

Figure 3. Continued

electrophoretic mobilities of the test compounds with non-polar, polar,
aromatic, as well as positively and negatively charged R groups. For
mobility prediction, the following input parameters were selected: pH,
l (effective capillary length), U (applied voltage), Q (peptide charge)
and Mw (molecular weight), both for the linear and the neural network
models.

The linear model was a simple multivariable one with its parameters
determined by linear regression using Matlab (Natick, MA). This
model did not give accurate modeling performance because of the
highly nonlinear characteristics of the studied relationship as depicted
in the correlation diagram of Figure 3(a). The average deviation of
the multivariable linear regression modeled mobility values from the
experimentally determined values was 208.5%. Therefore, we considered
that the predictive capability of this model was not satisfactory in case of
complex sample mixtures consisting of peptides with similar structures.
The correlation coefficient and the residuals of the artificial neural
network model, on the other hand, provided reasonably good prediction
in spite of its relatively simple structure, as delineated in Figure 3(b)
and 3(c).

The structure of our artificial neural network model is given in the
upper panel of Figure 4, and its main parameters are summarized in the
lower panel of the same figure. A sigmoid transfer function was applied
for the neurons in the hidden layer. The network was trained by a usual
back-propagation algorithm implemented in Matlab. The measured data
was divided into training and validation sets. The number of hidden
layer neurons was increased until no further significant performance
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2358 M. Olajos et al.

Figure 4. Structure (upper panel) and parameters (lower panel) of the ANN
model. Q represents the charge of the sample, l is the effective capillary length,
U is the applied voltage and Mw is the molecular weight.

improvement was obtained. The number of training periods was selected
at the minimum of the validation curve to avoid ANN overtraining.

Please note that in the following diagrams the validation data
set was applied. The structure-CZE parameters-mobility prediction
capabilities of the artificial neural network model are demonstrated in
Figures 5(a)–(c). The predictions are indicated by the lines, while the dots
represent the experimental data. Figure 5(a) delineates the electrophoretic
mobility versus pH relationship for the alanine tripeptide at different
applied electric field strengths. The results follow the expected behavior.
Figure 5(b) depicts the same relationship for the lysine tripeptide, while
in the case of serine tripeptide the relationship is shown in Figure 5(c).
Figures 5(a)–(c), all suggest that the studied relationship was rather
complex and nonlinear. This complexity can be accounted for the stepwise
changes of ionic charges, the interactions between the different tripeptides
in the sample and for other non studied structural characteristic factors.
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Artificial Neural Network Modeling 2359

Figure 5. Relationship between the electrophoretic mobility and the background
electrolyte pH of the model tripeptides as determined by the artificial neural
network model (lines) and the experimentally obtained data (point markers).
Alanine tripeptide (a), lysine tripeptide (b), serine tripeptide (c).
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Figure 5. Continued

At the same time the neural model reflected this function with good
accuracy. The average deviation of theANNmodeledmobility values from
the experimentally determinedmobilities was 1.95%, exhibiting apparently
good correlation.

The most important advantage of artificial neural networks over
regression analyses was their ability to allow flexible mapping of the
selected features by manipulating their functional dependence implicitly.
Developing networks and comparing them with the MLR models
provided us the opportunity to investigate the nonlinear characteristics
of the electrophoretic mobility dependences of the peptides on structural
descriptors and pH.

CONCLUSIONS

The carefully selected tripeptide test mixture of Lysine (KKK), alanine
(AAA), serine (SSS), tyrosine (YYY) and aspartic acid (DDD), enabled
study and modeling of the ionic charge-CZE parameters-mobility
relationship. The ionic charge is considered as one of the structural
descriptors. The basis for the selection was to represent all major
amino acid types (R-groups). The performance of the multivariable linear
and the artificial neural network model was compared based on the
experimental data. The back-propagation artificial neural network model
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showed superior performance. As a first approximation, the inadequacy
of the linear model was considered to be due to the highly nonlinear
effects of pH and some possible structural parameters. Continuation of
this work will include extending the experimental database and including
available literature data sources. Additionally, searching for other, more
adequate descriptors for the structural influence on the electric field
mediated differential migration of various model peptides.
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